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Abstract. In recent years, increasing attention has been given to the identification of the conversion of mild cognitive
impairment (MCI) to Alzheimer’s disease (AD). Brain neuroimaging techniques have been widely used to support the
classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose
PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI
who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-
up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS)
were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The
results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of
79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model
also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with
clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and
MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison
of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results
suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be
helpful in the early diagnosis of AD.
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INTRODUCTION

Alzheimer’s disease (AD), a common form of
dementia in the elderly, is a neurodegenerative dis-
ease accompanied by gray matter (GM) atrophy,
hypometabolism, and amyloid-� (A�) deposition
[1–3]. Mild cognitive impairment (MCI), as a tran-
sitional stage between normal aging and dementia,
has attracted increasing attention from researchers [1,
4–9]. At this stage, patients have already presented
some of the above-mentioned imaging changes [5, 6,
8, 10] but do not meet the criteria for AD [11–13].
However, some of the patients with MCI possibly
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convert to AD in the near future, and the annual
conversion rate is approximately 10% to 25% [14].
Therefore, studying MCI for the early detection of
AD is extremely important.

Neuroimaging technologies, such as magnetic
resonance imaging (MRI) and positron emission
tomography (PET), have been widely used in the
study of MCI and AD [4–7, 9, 10, 15–19]. MRI
can be used to measure brain GM volume. 18F-
fluorodeoxyglucose PET (FDG-PET) can evaluate
the regional cerebral metabolic rate for glucose in the
brain (CMRgl), and 18F-florbetapir PET (florbetapir-
PET) can be applied to detect A� deposition [1, 3,
12]. Studies have shown that, relative to MCI non-
converters (MCI-nc, individuals with MCI who have
not converted to AD in the follow-up period) at base-
line, MCI converters (MCI-c, individuals with MCI
who convert to AD) have metabolic deficits in the
left middle and superior temporal gyri [10], increased
A� deposition in posterior medial and lateral cortical
regions [20], and GM atrophy in the hippocampus,
much of the temporal lobe, posterior cingulate gyrus,
and precuneus [6, 18, 19]. The between-group differ-
ences in brain imaging data are extremely valuable
for the classification of MCI-c and MCI-nc groups.
However, the differences in single modality data are
relatively subtle and may be not sufficient for improv-
ing classification performance. Recently, multimodal
neuroimaging data have been used in a number of
MCI studies that demonstrated that different modal-
ities provide complementary information for MCI
prediction or classification [9, 16, 18, 21–24]. There-
fore, combining different modalities of neuroimaging
data may be necessary for distinguishing MCI-c from
MCI-nc.

Several classification methods have been used to
categorize the MCI-c and MCI-nc groups based on
multimodal imaging data and clinical test scores
[9, 16, 18, 23, 24]. For example, Classification of
Morphological Patterns Using Adaptive Regional
Elements (COMPARE) was used to predict whether
individuals with MCI will convert to AD, combin-
ing Spatial Pattern of Abnormalities for Recognition
of Early AD (SPARE-AD) with cerebrospinal fluid
(CSF) data [18]. Support vector machine (SVM) was
used by Zhang et al. to classify MCI-c subjects from
MCI-nc subjects based on MRI, PET and clinical
test scores such as Mini-Mental State Examina-
tion (MMSE) and Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog) [16]. Most of
the reported multimodal classification methods were
performed based on regions of interest (ROI). ROI-

based methods allow for determining specific ROIs
that contribute to the classification accuracy of diag-
nostic groups, and therefore show which ROIs are
most biologically meaningful in the discrimination
of MCI-c and MCI-nc. However, ROI-based meth-
ods require one to know the abnormal brain regions
related to the disease in advance and are limited to
some specific regions. Furthermore, the abnormal
brain region may be a portion of one ROI or cover
several ROIs, which may affect the performance
of classifier [25]. Hinrichs et al. used Multi-Kernel
Learning (MKL) to analyze MRI and FDG-PET data
based on the voxel to generate Multi-Modality Dis-
ease Marker (MMDM) scores and applied the scores
to predict the conversion from MCI to AD [24]. Liu
et al. proposed a hierarchical ensemble classification
method to make full use of the rich MRI imaging
information, and improved the AD versus normal
control classification result [25], which demon-
strates the voxel-wise analysis method is useful in
discrimination.

Partial least squares (PLS), a multivariate analysis
technique with the advantages of principal compo-
nent analysis (PCA) and multiple linear regression,
can fully apply the voxel information from multi-
modal imaging data to prediction or classification
[26, 27]. Moreover, PLS can extract the latent vari-
able pairs from independent and dependent variables
to overcome the problem of multiple correlation
and possible noise in the large imaging data. Sev-
eral studies have applied PLS as a classification
tool for aging and dementia diagnosis [28–31]. For
example, Chen et al. used multimodal PLS to sepa-
rate older and younger subjects with an accuracy of
100% based on MRI and FDG-PET images, which
illustrated the potential classification power of this
method [30]. Therefore, it is worth while to examine
the performance of the PLS method when combining
multimodal imaging data with clinical test scores in
the classification of MCI-c and MCI-nc based on the
voxel across the whole brain.

In this study, we applied the PLS method to clas-
sify MCI-c from MCI-nc based on multimodal brain
imaging data (florbetapir-PET, FDG-PET, and MRI)
and clinical test score (ADAS-cog). According to
the differences in design between the independent
and dependent matrices, we built two types of PLS
models (informed PLS and agnostic PLS) and exam-
ined their classification performances. In addition,
we evaluated the diagnostic power of PLS in com-
parison with SVM and random forest (RF) methods
respectively.
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MATERIALS AND METHODS

ADNI

Data used in the preparation of this article were
obtained from the Alzheimer’s disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD. For up-to-date information, see
http://www.adni-info.org.

Participants

The ADNI general inclusion criteria are described
in detail at https://adni.loni.usc.edu/wp-content/up
loads/2010/09/ADNI GeneralProceduresManual.pdf.
Enrolled subjects were between 55–90 years of age.
According to the ADNI clinical inclusion criteria, for
the diagnosis of MCI, the subjects showed subjective
memory complaint and objective memory loss as
measured by education-adjusted scores on Wechsler
Memory Scale Logical Memory II, had MMSE
scores between 24 and 30 and a clinical dementia
rating (CDR) of 0.5. These individuals had general
cognition and functional performance sufficiently
preserved but with the absence of dementia.

This study included 129 subjects with MCI that
were followed up for three years with all corre-
sponding florbetapir-PET, FDG-PET, and MRI data
at baseline. Within three years, 64 participants (MCI-
c) converted to AD, while the other 65 participants

Table 1
Demographic information for the subjects in this study

MCI-c MCI-nc p-
(n = 64) (n = 65) value

Gender (female/male) 29/35 26/39 0.54
Age 72.5 ± 7.4 72.2 ± 7.5 0.76
Conv Time (years) 1.4 ± 0.7 – –
Last follow-up time – 3.1 ± 0.2 –
Years of education 16.1 ± 2.7 15.8 ± 2.4 0.54
APOE ε4 (NC/HT/HM) 15/37/12 43/18/4 5.92e-6
MMSE 26.9 ± 1.9 28.3 ± 1.8 1.78e-5
ADAS-cog 14.4 ± 5.2 7.4 ± 2.9 1.99e-16

MCI, mild cognitive impairment; MCI-c, MCI converter; MCI-
nc, MCI non-converter; APOE, apolipoprotein E; NC, non-carrier;
HT, heterozygote; HM, homozygote; MMSE, Mini-Mental State
Examination; ADAS-cog, Alzheimer’s Disease Assessment Scale-
Cognitive Subscale; Conv Time, conversion time.

(MCI-nc) maintained their MCI status. Table 1 lists
the demographic information for all of these subjects.
The MCI-c group did not significantly differ from
the MCI-nc group in gender (χ2

(1) = 0.37, p = 0.54),
age (t(127) = 0.304, p = 0.76) or educational level
(t(127) = 0.613, p = 0.54) but had significantly more
APOE ε4 carriers (χ2

(2) = 24.08, p = 5.92e − 6) and
lower MMSE scores (t(127) = −4.46, p = 1.78e −
5) and higher ADAS-cog scores (t(127) = 9.47, p =
1.99e − 16). For each subject, the imaging time inter-
vals of florbetapir-PET, FDG-PET and MRI were no
more than three months.

MRI data acquisition

For each participant, T1-weighted image was
obtained from 1.5T (15 subjects) or 3T (114 sub-
jects) scanners. MRI data were acquired from
various sites and platforms with somewhat different
acquisition parameters. For each subject, sagit-
tally oriented 3D anatomical image was collected
using the MPRAGE sequence with 1.25 × 1.25 mm
in-plane spatial resolution and 1.2-mm thickness.
To enhance standardization across sites and plat-
forms, each MRI dataset was preprocessed, which
included gradwarp, B1 non-uniformity and N3 to
correct gradient nonlinearity and intensity non-
uniformity. Details regarding MRI Pre-processing
can be found at http://adni.loni.usc.edu/methods/
mri-analysis/mri-pre-processing/.

PET data acquisition

A detailed description of PET protocols and acqui-
sition can be found at http://www.adni-info.org.
Briefly, PET images were acquired 30–60 min post-
injection at a rate of one frame per 5 min. Then, raw
PET images were processed to remove the possible
differences resulting from using different scanners.
For each subject, each frame was coregistered to the
first frame, and then all frames were averaged to gen-
erate a single average image. The averaged image was
reoriented and filtered into a standard 160 × 160 × 96
voxel image grid having 1.5 mm cubic voxels. Finally,
the images were smoothed with 8 mm FWHM Gaus-
sian kernels. Details of the PET pre-processing were
described at http://adni.loni.usc.edu/methods/pet-
analysis/pre-processing/. The pre-processed PET
images including steps of ‘Co-reg, Avg, StdImg and
VoxSiz, Uniform Resolution’ were downloaded for
the subsequent image preprocessing and statistical
analysis.

http://adni.loni.usc.edu
http://www.adni-info.org
https://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
https://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
http://www.adni-info.org
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
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Image preprocessing

All of the images were preprocessed in SPM8 (http:
//www.fil.ion.ucl.ac.uk/spm) based on MATLAB
(Mathworks Inc., Sherborn, MA, USA) software.
For each subject’s MRI image, automated segmen-
tation and normalization procedures [32–35] were
performed in VBM8 Toolbox (http://dbm.neuro.uni-
jena.de/vbm-8). GM maps were normalized by a
protocol called diffeomorphic anatomical registra-
tion using exponential lie algebra (DARTEL) [32]
into Montreal Neurological Institute (MNI) space.
Finally, a common optimal GM mask was created
with an optimal threshold using Masking toolbox
(http://www.cs.ucl.ac.uk/staff/g.ridgway/masking)
for extracting voxels in the subsequent section for
creating numerical matrices. For each subject’s PET
images, first, florbetapir-PET and FDG-PET images
were separately co-registered to the corresponding
subject’s MR images and then normalized to MNI
space using the normalization parameters derived
from MRI deformations. Then, each PET image was
normalized to the average intensity of the reference
region to generate the standardized uptake value ratio
(SUVR) map. The global cerebrum was the reference
region for FDG-PET images, while the cerebellum
was the reference region for florbetapir-PET images
[36]. Finally, all of the GM and SUVR maps were
smoothed with 8 mm full width at half maximum
(FWHM) Gaussian kernels.

Creating data matrices

Table 2 shows the independent datablock and
dependent datablock in each specific PLS model. The
independent block is referred to as X; the dependent
block as Y . The single-modality informed PLS

model uses Xflorbetapir−PET , XFDG−PET and XMRI

as independent blocks respectively. The imaging data
matrix was created using voxels within the GM mask.
For instance, for Xflorbetapir−PET , we extracted voxel
values within the GM mask from each SUVR map of
florbetapir-PET and reshaped them as a row vector
labelled as v1, v2, . . . , vk (where k is the number of
voxels within the GM mask, k = 295257 in this study).
Then we stacked all row vectors as Xflorbetapir−PET

by row. The row number is the number of subjects
(129 in our study). Each column of Xflorbetapir−PET

represents the corresponding voxel’s value for
each subject. The creating procedure of data
XFDG−PET and XMRI matrices was similar to that of
Xflorbetapir−PET . The multi-modality informed PLS
model used three imaging datasets florbetapir-PET,
FDG-PET and MRI, stacked by column as inde-
pendent blocks. In all informed models, MCI-c was
designated as 1 and MCI-nc as 0 in the dependent
block Y to represent a subject’s group membership.
For agnostic PLS, we built six specific models:
florbetapir–FDG, florbetapir–MRI, FDG–MRI,
florbetapir–(FDG+MRI). FDG–(florbetapir+MRI)
and MRI–(florbetapir+FDG). The agnostic PLS
model is blind to group membership. Therefore, the
independent block and dependent block were all
designated as imaging data. For example, for the
two-modality florbetapir—FDG model, the inde-
pendent data is Xflorbetapir−PET and the dependent
data is XFDG−PET . The procedures of creating data
matrices were similar to those of the informed PLS.

Partial least squares analysis

PLS analysis was performed by a MATLAB
program written by Hervé Abdi [26] (http://www.
utdallas.edu/ herve/). Briefly, PLS was performed
according to the following steps:

Table 2
Independent datablocks and dependent datablocks for PLS models

Model X Y

Informed PLS model
florbetapir [Xflorbetapir-PET ] [1, . . . ,1,0, . . . ,0]
FDG [XFDG-PET ] [1, . . . ,1,0, . . . ,0]
MRI [XMRI ] [1, . . . ,1,0, . . . ,0]
Combined [XMRI ,XFDG-PET , Xflorbetapir-PET ] [1, . . . ,1,0, . . . ,0]
Agnostic PLS model
florbetapir–FDG [Xflorbetapir-PET ] [XFDG-PET ]
florbetapir–MRI [Xflorbetapir-PET ] [XMRI ]
FDG–MRI [XFDG-PET ] [XMRI ]
florbetapir–(FDG+MRI) [Xflorbetapir-PET ] [XFDG-PET , XMRI ]
FDG–(florbetapir+MRI) [XFDG-PET ] [Xflorbetapir-PET , XMRI ]
MRI–(florbetapir+FDG) [XMRI ] [Xflorbetapir-PET , XFDG ]

X is the independent datablock, Y is the dependent datablock.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de/vbm-8
http://www.cs.ucl.ac.uk/staff/g.ridgway/masking
http://www.utdallas.edu/~herve/
http://www.utdallas.edu/~herve/
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1) The first latent variable of X is t = Xw where
w = (w1, w2, . . .)′ with norm ||w|| = 1. Fur-
thermore, wj is a scalar for variable xj , which
is the jth column of X (j = 1, 2 . . . k). Similarly,
the first latent variable of Y can be expressed as
u = Yc with norm ||c|| = 1. w and c are calcu-
lated by maximizing the covariance between the
latent variables. w has been shown to be the cor-
responding eigenvector of matrix

[
X′YY ′X

]
, and

c has been shown to be that of matrix
[
Y ′XX′Y

]
.

t and u are called the first latent variable pair of
X and Y . When w or c represents weight coeffi-
cients of imaging voxels, it can be transformed
into Z-scores and reshaped into 3D map that
depicted covarying patterns of imaging data. A
detailed description regarding constructing latent
variables can be found at [30].

2) The contributions of the first latent variable are
regressed out from X and Y to construct the new
latent variable pair.

3) Steps 1 and 2 are repeated to construct the sec-
ond latent variable pair, up to L, where L =
rank (X).

4) The predicted Y can be expressed as Ŷ =
TBCT = XBPLS , where BPLS = PT+BCT (PT+
is the Moore-Penrose pseudo-inverse of PT

),T
is the matrix storing a set of latent variables that
model X and that simultaneously predict Y, B is
a diagonal matrix of slopes of the predictions of
Y from T , C is the factor loadings of Y , and P is
the factor loadings of X.

Leave-one-out cross-validation

In informed PLS, we used the leave-one-out cross-
validation method to obtain the PLS classification
results. Briefly, the PLS procedure was repeated 129
times (the number of all subjects), leaving one sub-
ject out as a test sample each time. If the predicted
group membership value for the test subject is closer
to 1, then the predicted group is MCI-c, while if this
value is closer to 0, then the predicted group is MCI-
nc. Finally, we calculated the classification accuracy,
sensitivity, and specificity.

Fisher’s linear discriminant analysis (Fisher’s
LDA)

Fisher’s LDA was implemented in SPSS 18.0
(SPSS, Inc., Chicago, IL, USA). In agnostic PLS,
the extracted latent variables were input as variables
of Fisher’s LDA. The leave-one-out cross-validation

method was applied to investigate the performance
of the agnostic PLS model in classifying MCI-nc
subjects from the MCI-c group. In addition, the clas-
sification effect of the clinical test score (ADAS-cog)
was also evaluated in combination with the latent
variables.

Receiver operating curve (ROC) analysis

We performed ROC analysis to obtain ROC curve
and Area under the curve (AUC) to evaluate the
performance of each PLS model with the numeri-
cal outcome of subsequently used classifiers of these
PLS models. ROC analysis was implemented in SPSS
18.0.

Support vector machine (SVM) and random
forest (RF)

SVM and RF were commonly used classifica-
tion methods. In this study, we also used these two
methods to classify MCI-c/MCI-nc and compared
classification results with those of PLS. SVM is a
pattern classification algorithm based on the structure
risk minimization theory. RF is an ensemble clas-
sification model consisting of many decision trees,
where the final predicted class label for the test sam-
ples decided by voting the predictions of all individual
trees. We also built four models: florbetapir, FDG,
MRI, Combined (combining three modalities) for
SVM and RF respectively. The construction of the
independent and dependent data matrices was the
same to that of informed PLS. Leave-one-out cross-
validation was also used to evaluate the classification
performance. SVM was implemented by LIBSVM
toolbox

(http://wwwcsientuedutw/vs.cjlin/libsvm) and the
linear kernel function was used. RF was performed
by Windows-Precompiled-RF Mexstandalone-v0.02
toolbox

(https://randomforest-matlab.googlecode.com/
files/Windows-Precompiled-RF Mexstandalone-v0.
02-.zip) and the number of trees was 500.

RESULTS

Classification of informed PLS models

The number of latent variables was determined
according to the optimal classification accuracy
resulted from leave-one-out cross-validation method.
In this way, the first three pairs of latent variables were

http://wwwcsientuedutw/vs.cjlin/libsvm
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Table 3
Classification results for MCI-c versus MCI-nc based on informed

PLS models

Model Accuracy (%) Sensitivity (%) Specificity (%)

florbetapir 74.42 75.00 73.85
FDG 75.97 68.75 83.08
MRI 69.77 64.06 75.38
Combined 81.40 79.69 83.08

used for each informed PLS model. Table 3 shows the
classification accuracy, sensitivity, and specificity of
different informed PLS models. Specifically, results
of three single-modality models differ: the best accu-
racy is 75.97% when using FDG-PET, and the lowest
accuracy is 69.77% when MRI is used. Relative to
all single-modality models, the multimodal informed
model achieves better classification results (81.40%
accuracy, 79.69% sensitivity, and 83.08% specificity)
than any unimodal PLS model.

In addition, Fig. 1a shows the ROC curves of four
models regarding the classification between MCI-c
and MCI-nc. The greatest area under the ROC curve
(AUC) is 0.856 for the multimodal model.

Classification of agnostic PLS models

The optimal number of latent variables was
selected in the same way as that used in the
informed PLS model. Table 4 shows the classifi-
cation accuracy, sensitivity, and specificity results
of different agnostic PLS models based on Fisher’s
LDA. The florbetapir–FDG and florbetapir–MRI
model performs optimally (79.07% accuracy)

among two-modality models. However, three-
modality models outperform two-modality models.
florbetapir–(FDG+MRI) achieves the best classifica-
tion result (accuracy: 82.17%, sensitivity: 81.25%
and specificity: 83.08%). ROC curves are shown
in Fig. 1b. The greatest AUC is 0.907 for the
florbetapir–(FDG+MRI) model. AUC of this model is
significantly higher than the three-modality informed
PLS model (p = 0.024).

We also evaluated the performance of ADAS-cog
and MMSE for MCI-c versus MCI-nc classification
based on Fisher’s LDA. The ADAS-cog obtains bet-
ter result (accuracy: 79.07%, sensitivity: 73.44% and
specificity: 84.62%) than MMSE (accuracy: 67.44%,
sensitivity: 60.94% and specificity: 73.85%). The
classification results combining imaging data and
ADAS-cog are improved (Table 4). In particular,
the florbetapir–(FDG+MRI) model achieves an opti-
mal classification accuracy of 86.05%, sensitivity of
81.25%, and specificity of 90.77%.

Classification of SVM and RF

Table 5 shows classification results of SVM and
RF. For single-modality SVM, the highest accuracy
is 75.19% for FDG-PET, and the lowest is 67.44%
for MRI. However when combining all three imaging
data, the result is the best (accuracy: 76.74%). For RF,
the model of combining three modalities also obtains
the best result (accuracy 73.64%). Figure 2 shows the
histogram of results for informed PLS, SVM, and RF.

Fig. 1. ROC curves for MCI-c versus MCI-nc classification. (a) and (b) are curves of informed PLS and agnostic PLS based on neuroimaging
data respectively. Numbers in parentheses are the AUCs.
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Table 4
Classification results for MCI-c versus MCI-nc based on agnostic PLS models

Model Neuroimaging data Neuroimaging data+ADAS-cog
Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

florbetapir–FDG 79.07 79.69 78.46 83.72 78.13 89.23
florbetapir–MRI 79.07 79.69 78.46 83.72 84.38 83.08
FDG–MRI 74.42 70.31 78.46 84.50 82.81 86.15
florbetapir–(FDG+MRI) 82.17 81.25 83.08 86.05 81.25 90.77
FDG–(florbetapir+MRI) 79.84 78.13 81.54 84.50 79.69 89.23
MRI–(florbetapir+FDG) 79.07 81.25 76.92 84.50 79.69 89.23

Fig. 2. Graph of prediction accuracy, sensitivity, and specificity based on informed PLS, SVM, and RF methods.

Covarying patterns of three modalities

Figure 3 shows the covarying patterns across
florbetapir-PET, FDG-PET, and MRI generated by
the multimodal informed PLS model (Fig. 3a) and
the florbetapir–(FDG+MRI) agnostic PLS model
(Fig. 3b) for the first latent variable. Colors rep-
resent Z-scores and are scaled to fit the range of
each modality. For the multimodal informed PLS
model, the MCI-related covarying brain regions
mainly involved fusiform gyrus, middle/inferior
temporal gyrus, middle/superior frontal gyrus and
precuneus for florbetapir-PET; posterior cingulate
cortex, precuneus, angular gyrus, inferior parietal
lobule and inferior/middle temporal gyrus for FDG-
PET; hippocampus, parahippocampus, amygdala and
middle/inferior temporal gyrus for MRI. For the
florbetapir–(FDG+MRI) agnostic PLS model, the
MCI-related major brain regions involved in covary-
ing patterns were similar to those of informed PLS
model.

DISCUSSION

In this study, PLS, a multimodal and multivariate
data analysis technique, was used to combine three
modalities of imaging data (florbetapir-PET, FDG-

PET, and MRI) and clinical test score (ADAS-cog) to
discriminate MCI-c subjects from the MCI-nc group.
Two types of PLS models (informed PLS and agnos-
tic PLS) were built, and the classification abilities
of single-modality and multimodal PLS models were
evaluated.

Individuals with MCI are considered at high-risk
of conversion to AD [37]. The existing docu-
ments reported significant differences in GM volume,
CMRgl, and A� deposition between MCI-c and MCI-
nc groups [10, 18–20]. Therefore, MRI and PET data
have been used widely in the classification of MCI
in neuroimaging studies [4, 9, 16–18, 21, 38]. In this
study, MRI and PET data were entered as the initial
data matrices in two types of PLS models, informed
PLS and agnostic PLS. The results showed that the
three-modality informed PLS model achieved better
classification accuracy compared with the single-
modality model, and the three-modality agnostic
PLS model also achieved better classification com-
pared with the two-modality model. We noted
that the results of both FDG–(florbetapir+MRI)
and MRI–(florbetapir+FDG) agnostic models were
inferior to that of florbetapir–(FDG+MRI) model,
which suggested that the order of the different neu-
roimaging variables may affect the classification
result. During the disease development of AD, A�
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Fig. 3. The covarying patterns of florbetapir-PET, FDG-PET, and MRI for MCI-c versus MCI-nc classification for PLS models. (a): Combined
informed PLS; (b): florbetapir–(FDG+MRI) agnostic PLS.

Table 5
Classification results for MCI-c versus MCI-nc based on SVM and RF methods

Model SVM RF
Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

florbetapir 70.54 73.44 67.69 72.87 71.88 73.85
FDG 75.19 78.12 72.31 72.87 73.44 72.31
MRI 67.44 60.94 73.85 71.32 68.75 73.85
Combined 76.74 79.69 73.85 73.64 73.44 73.85

SVM, Support Vector Machine; RF, Random Forest.

deposition appears earlier than gray matter atrophy
and hypometabolism [3]. The optimal classifica-
tion results of the model of florbetapir–(FDG+MRI)
seemed to confirm this point implicitly. Additionally,
the ROC analysis showed the three-modality agnos-
tic model of florbetapir–(FDG+MRI) had higher
statistical power than the three-modality informed
PLS model (p < 0.05). The classification performance
was further improved when neuroimaging data were
combined with clinical test score (ADAS-cog) in
the agnostic PLS model. Actually, in the informed
PLS, the ADAS-cog was also combined with neu-
roimaging data (not shown). However the result did
not change probably because the neruimaging data
matrix was so large that the effect of clinical test score
was submerged.

In addition, we applied SVM and RF methods to
MCI-c versus MCI-nc discrimination respectively.
Informed PLS outperformed these two methods espe-
cially when three modalities were fused. In order to
make the results comparable, SVM and RF classi-
fications were performed based on the voxel-wise
data. Compared to SVM and RF, one of the advan-
tages of PLS can address multiple correlations within

and between modalities by extracting latent variables
from imaging data.

Table 6 lists the classification results reported in
literatures and our study. In the existing MCI classi-
fication studies, for example, Cho et al. used cortical
thickness data extracted from MRI for unimodal
classification to discriminate MCI-c subjects from
MCI-nc groups (from ADNI) and obtained a sensi-
tivity of 63% and specificity of 76% based on the
incremental learning method [38], which was com-
parable with our result for the informed PLS model
with MRI data only. Bakkour et al. predicted pro-
gression to mild AD with 83% sensitivity and 65%
specificity based on ROC analysis using 29 Non-
progressors and 20 Progressor from OASIS (Open
Access Series of Imaging Studies) [39]. The sensi-
tivity is higher than that of us but specificity is lower.
More recently, Trzepacz et al. obtained accuracies
of 62% and 66%, sensitivities of 10% and 45%, and
specificities of 97% and 80% using FDG-PET and
PIB-PET data, respectively, based on elastic net logis-
tic regression of MCI-c and MCI-nc data from the
ADNI database [9]. Our results for these two uni-
modal informed PLS models were better in term of
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Table 6
Comparison of classification results reported in literatures and our study

Articles Modalties Methods Subjects Accuracy (%) Sensitivity (%) Specificity (%)

Cho et al. [38] MRI Incremental learning 131 MCI-nc+72
MCI-c (ADNI)

– 63 76

Bakkour et al.
[39]

MRI ROC 29 Nonprogressors+20
Progressors (OASIS)

– 83 65

Trzepacz et al.
[9]

FDG-PET Elastic net logistic
regression

30 MCI-nc+20 MCI-c
(ADNI)

62 10 97

PIB-PET 66 45 80
MRI 67 37 87
MRI, PIB-PET 76 53 90
MRI, FDG-PET 69 37 90

Westman et al.
[40]

MRI OPLS 444 MCI (AddNeu-
roMed/ADNI)

– 71 60

Gray et al. [42] FDG-PET, MRI Random forest 34 pMCI+41 sMCI
(ADNI)

58.0 57.1 58.7

Teipel et al.
[20]

AV45-PET,
FDG-PET, MRI

Logistic regression 88 MCI-nc+39 MCI-c
(ADNI)

72 – –

Zhang et al.
[16]

MRI SVM+ROC 50 MCI-nc+38 MCI-c
(ADNI)

0.697 (AUC) – –

MRI, FDG-PET,
MMSE,
ADAS-cog

0.768 (AUC) – –

Cui et al. [43] MRI SVM 153 Non-decliners+33
decliners (MAS)

63.80 64.17 63.79

MRI, NMs 78.51 73.33 79.75
Our study florbetapir-PET,

FDG-PET, MRI,
ADAS-cog

Agnostic PLS 64 MCI-c+65 MCI-nc
(ADNI)

86.05 81.25 90.77

NMs, neuropsychological measures; MKL, multi-kernel learning; OASIS, Open Access Series of Imaging Studies; AUC, the corresponding
area under the ROC curve; MAS, Sydney Memory and Ageing Study; SVM, Support Vector Machine.

accuracy than those of Trzepacz et al. However, in
contrast with our results, in [9], MRI had the highest
and FDG had the lowest accuracy. In addition, West-
man et al. applied orthogonal partial least squares
(OPLS) in MRI data to predict conversion from MCI
to AD, resulting in a sensitivity of 71% better than
our result when only using MRI data [40]. The poten-
tial reasons for the discrepancy may be the different
methodologies and features employed.

Recently, several studies have combined multi-
modal neuroimaging data in MCI classification or
prediction studies [9, 16, 18, 23, 24, 41, 42]. For
example, also Trzepacz et al. obtained an accuracy
of 76%, sensitivity of 53% and specificity of 90%
when MRI and PIB-PET data were fused [9]; the
sensitivity and specificity of these results were not so
balanced compared to our results when we used MRI
and florbetapir-PET simultaneously in the agnostic
PLS model. Balanced measurements would be more
appropriate in predicting conversion of AD among
MCI patients. This might be important as the accu-
mulative conversion rate approximately 10% to 25%
annually. MRI and FDG-PET were also combined
in their study and achieved an accuracy of 69%,

sensitivity of 37% and specificity of 90% [9]. Gray et
al. also combined FDG-PET and MRI from ADNI
based on random forest method for pMCI/sMCI
classification, and achieved accuracy: 58.0%, sen-
sitivity: 57.1%, and specificity: 58.7% [42]. These
results were not superior to our result when these
two modalities were combined. Until now, few
MCI classification studies have combined MRI,
florbetapir-PET, and FDG-PET. Compared with our
three modalities results, Teipel et al. achieved 72%
cross-validated accuracy for prediction of conver-
sion status based on logistic regression models fusing
those three modalities also from ADNI [20]. Fur-
thermore, for both the informed PLS model and
agnostic PLS model, three-modality models obtained
better identification results compared to the single-
modality and two-modality models. These results
demonstrate that different neuroimaging modali-
ties may provide complementary information that
may be useful for increasing the accuracy of MCI
classification.

Many studies have also examined the contribu-
tion of clinical test scores to discrimination [16, 23,
41, 43]. For example, Zhang et al. reported that the
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accuracy, sensitivity, and specificity of discrimination
were much improved when cognitive scores (MMSE
and ADAS-cog) were combined based on the SVM
method; the corresponding AUC values improved to
0.768 from 0.697 (0.697 is the AUC of the MRI-
based dataset, which is the largest in the single
modality method) [16]. Cui et al. also obtained bet-
ter classification performance when combining MRI
and neuropsychological measures for MCI prediction
based on SVM [43]. In this study, we also examined
the effect of clinical test score on the classification
of MCI-nc and MCI-c groups. The ADAS-cog and
MMSE were also used for classification based on
Fisher’s LDA. For the MMSE performs not well,
we focus on the ADAS-cog only in this study. Our
result presented the same trend in the agnostic PLS
model as the previous study. Although, for informed
PLS models, combining neuroimaging data with the
ADAS-cog, the classification result was not improved
for the effect of the ADAS-cog was potentially
drowned in the large independent matrix. However,
in the agnostic PLS model, the classification was
completed by Fisher’s LDA with the extracted latent
variables and ADAS-cog as input variables. The
effect of ADAS-cog was obvious. Accuracy, sen-
sitivity and specificity were greatly improved (see
Table 4), which indicates that the fusion of neu-
roimaging data and clinical test score can consistently
and substantially optimize the classification results.
Thus, ADAS-cog is a valuable measure for the detec-
tion of MCI-c relative to MCI-nc.

The maps of weight information of the imag-
ing voxel represent the spatial covariation patterns
classifying MCI-c from MCI-nc within or across
modalities. The major brain regions involved in
covarying patterns of informed PLS and agnostic PLS
were similar in our study. These findings are similar
to what reported in the univariate or unimodal studies
with some differences [10, 20, 18], however, reflect-
ing possible covarying patterns in this multimodal
approach that are not observable otherwise.

PLS is a tool with potential value in the classifica-
tion researches [30, 31]. The PLS method covers and
generalizes the characteristics of PCA and multiple
regression and is very useful, particularly when pre-
dicting the dependent variable dataset from a large
number of independent variable dataset is required
[26]. The prediction is completed by extracting a
set of latent variables from dependent and indepen-
dent variables, which have the best predictive power
(maximizing the covariance between the linear com-

bination of dependent and independent variables).
The most obvious advantage of the PLS method is that
it can be used to analyze neuroimaging data without
prior information based on all voxels with multiple
datablocks as dependent and independent variables.
In this study, PLS was used to detect the progres-
sion of MCI. The informed PLS model incorporates
the known information (group membership) regard-
ing the variable of interest; however, the agnostic
PLS model is blind to the membership information.
The informed PLS model can be considered a clas-
sifier because it can complete classification by itself
through predicting the group membership from neu-
roimaging data. After leave-one-out cross-validation
procedure, we can calculate the accuracy, sensitiv-
ity, and specificity according to the predicted group
membership. However, the agnostic PLS model can-
not complete classification independently because
the independent and dependent variables are all imag-
ing data. Thus, we used Fisher’s LDA to analyze the
latent variables extracted by agnostic PLS. In addi-
tion, in the informed PLS model, the independent
datablock was a neuroimaging data matrix; therefore,
the effect of ADAS-cog could easily be obscured.
However, for the agnostic PLS model, the classi-
fication was estimated by Fisher’s LDA with the
extracted latent variables as input variables. There-
fore, the agnostic PLS model could improve results
when combining ADAS-cog. Additionally, we tested
the effect of different smoothing level (0 mm, 4
mm, 8 mm) of the SUVR maps on the classifi-
cation results. The results showed the smoothing
level had no significant influences on the accuracy,
sensitivity, and specificity of four informed PLS
models.

Our current study has some limitations. Firstly, the
sample size is relatively small, which may lead to
lower statistical power of classification. Our study
was performed based on multimodality neuroimag-
ing data; therefore, requiring each subject to have
all of the corresponding modality data. This require-
ment limited the number of subjects available for
our study. However, we used the leave-one-out cross-
valid method to improve the reliability of the results
and to reduce the possible influence of small sam-
ple size. Secondly, we only used the baseline data
of each subject that was followed for three years.
Longitudinal data may perform better in the analy-
sis, and this possibility needs to be explored in future
studies. Finally, the PLS method has the potential
to combine additional modalities of imaging data.
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Therefore, functional MRI and diffusion tensor imag-
ing will be combined in future studies.

CONCLUSION

In this study, we classified MCI-c subjects from
MCI-nc subjects based on the PLS method and
demonstrated that the multimodal PLS model outper-
formed the unimodal PLS model. We combined three
modalities of neuroimaging data (florbetapir-PET,
FDG-PET, and MRI) and clinical test score (ADAS-
cog) and achieved valuable classification results.
Furthermore, PLS showed greater diagnostic power
compared with SVM and RF. In summary, our PLS
models applied to identify the conversion of MCI to
AD may be helpful for detecting MCI or for predict-
ing AD. These models may also be useful in clinical
diagnosis and pathological research.
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